ERRATA

Volume 79, Number 1 (1989), in the article "Direct Calorimetric Determination of Energetics of Oxygen in $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{x}$," by M. E. Parks, A. Navrotsky, K. Mocala, E. Takayama-Muromachi, A. Jacobson, and P. K. Davies, pages 53-62:

In this publication we presented direct calorimetric data for the oxidation of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{x}$. The original calorimetric data (Enthalpy, observed, J/g) in Table II are correct but we thank S. Julsrud of the Norwegian Institute of Technology for pointing out an error in the last column ($\mathrm{kJ} / \mathrm{mole}$) of Table II. That column and Fig. 2 represent the enthalpy of Eq. (4) calculated by a thermochemical cycle. Although the cycle is described correctly in the text (Eqs. (1) to (4)), the enthalpy of Eq. (3) was given the wrong sign in the actual computation of ΔH_{4}. The correct values for ΔH_{4} are shown in the revised versions of Table II and Fig. 2. As before, a linear relation between ΔH_{4} and x is seen, with no significant difference between the three sets of samples and no discontinuity and no change in slope either at $x=$ 6.5 or at the orthorhombic-tetragonal transition. Thus, the discussion in our paper needs no modification but the corrected value of the partial molar enthalpy of oxygen (Eq. (6)) is $-190 \mathrm{~kJ} / \mathrm{mole}$, with an estimated uncertainty, as before, of ± 5 $\mathrm{kJ} /$ mole. This is in fact in better agreement than our previously reported value of $-237 \pm 5 \mathrm{~kJ} / \mathrm{mole}$ with values of -200 to $-221 \mathrm{~kJ} /$ mole estimated from the

REVISED TABLE II
Calorimetric Data

	Enthalpy (Eq. (4)) $\mathrm{kJ} / \mathrm{mole}$	Composition	Enthalpy (Eq. (4)) kJ/mole
5.97 (AJ)	-40.8 ± 3.9	6.42 (AJ)	4.8 ± 4.8
6.01 (ETM)	-34.5 ± 4.6	6.43 (ETM)	10.0 ± 2.8
6.02 (PD)	-30.4 ± 1.1	6.49 (ETM)	16.6 ± 2.9
6.04 (AJ)	-37.3 ± 3.0	6.60 (PD)	12.2 ± 1.3
6.10 (ETM)	-24.5 ± 3.1	6.62 (ETM)	24.4 ± 2.0
6.11 (AJ)	-26.2 ± 1.7	6.62 (ETM)	23.6 ± 4.5
6.20 (AJ)	-20.6 ± 4.0	6.64 (AJ)	19.6 ± 3.9
6.20 (ETM)	-10.0 ± 2.3	6.79 (AJ)	32.2 ± 2.6
6.22 (ETM)	-13.9 ± 3.3	6.82 (ETM)	44.6 ± 1.0
6.25 (ETM)	-12.9 ± 4.5	6.88 (ETM)*	51.5 ± 2.6
6.30 (ETM)	-4.6 ± 2.9	6.89 (AJ)	54.2 ± 3.0
6.31 (PD)	-5.8 ± 2.0	6.93 (ETM)	54.7 ± 2.4
6.35 (AJ)	-3.9 ± 3.6	6.94 (AJ)	50.7 ± 1.7
6.36 (ETM)	0.0 ± 2.4		

[^0]

Revised Fig. 2. Enthalpy of oxidation or reduction (Eq. (4)), kJ/mole. Open triangles, P. K. Davies samples; open squares, A. Jacobson samples; filled circles, E. Takayama-Muromachi samples.
temperature dependence of oxygen content and of $-190 \pm 20 \mathrm{~kJ} /$ mole obtained by acid calorimetry.

Volume 80, Number 1 (1989), in the article "Syntheses and Characterization of Two Novel Inclusion Compounds: $\mathrm{AlAsO}_{4} \cdot 0.2\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NOH} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}$ and GaAsO 4 $\cdot 0.2\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NOH} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}$,'' by J. Chen and R. Xu, pages $149-151$: The formulae $\mathrm{AlPO}_{4}^{n-}, \mathrm{GaPO}_{4}^{n^{-}}, \mathrm{AlAsO}_{4}^{1^{-}}, \mathrm{AlAsO}_{4}^{2-}$, and $\mathrm{GaAsO}_{4}^{1^{-}}$should read $\mathrm{AlPO}_{4}^{-n}, \mathrm{GaPO}_{4}^{-n}$, $\mathrm{AlAsO}_{4}^{-1}, \mathrm{AlAsO}_{4}^{-2}$, and GaAsO_{4}^{-1}, respectively.

[^0]: ${ }^{*} \Delta H_{\text {obs }}=436.3 \pm 3.9 \mathrm{~J} / \mathrm{g}$, correcting typographical error in enthalpy, observed, J / g.

